Metabotropic glutamate receptors and dopamine receptors cooperate to enhance extracellular signal-regulated kinase phosphorylation in striatal neurons.
نویسندگان
چکیده
Striatal medium spiny neurons are an important site of convergence for signaling mediated by the neurotransmitters dopamine and glutamate. We report that in striatal neurons in primary culture, signaling through group I metabotropic glutamate receptors (mGluRs) 1/5 and the D1 class of dopamine receptors (DRs) 1/5 converges to increase phosphorylation of the mitogen-activated protein kinase ERK2 (extracellular signal-regulated kinase 2). Induction of mitogen-activated protein kinase kinase-dependent signaling cascades by either mGluR1/5 or DR1/5 gave rise to increases in phosphorylation of ERK2. Coactivation of mGluR1/5 and DR1/5 with (S)-3,5-dihydroxyphenylglycine and (+)-1-phenyl-2,3,4,5-tetrahydro-(1H)-3-benzazepine-7,8-diol hydrochloride enhanced the phosphorylation of ERK2. This interaction between mGluR1/5 and DR1/5 required protein kinase C (PKC), because the PKC inhibitors calphostin C, bisindolylmaleimide I, and Gö6976 blocked DR1/5-enhanced phosphorylation of ERK2. Use of the phosphatase inhibitors calyculin and okadaic acid indicated that inhibition of protein phosphatases 1 and 2A dramatically enhanced ERK2 phosphorylation by mGluR1/5. Coactivation of mGluR1/5 and DR1/5 also enhanced cAMP-response element binding protein (CREB) phosphorylation (compared with each receptor agonist alone) but did not enhance CREB-mediated transcriptional activity. Thus, signal transduction pathways activated by DR1/5 and mGluR5 interact to modify downstream events in striatal neurons while retaining numerous regulatory checkpoints.
منابع مشابه
A novel Ca2+-independent signaling pathway to extracellular signal-regulated protein kinase by coactivation of NMDA receptors and metabotropic glutamate receptor 5 in neurons.
The specification and organization of glutamatergic synaptic transmission require the coordinated interaction among glutamate receptors and their synaptic adaptor proteins closely assembled in the postsynaptic density (PSD). Here we investigated the interaction between NMDA receptors and metabotropic glutamate receptor 5 (mGluR5) in the integral regulation of extracellular signal-regulated prot...
متن کاملMetabotropic mGlu5 receptors regulate adenosine A2A receptor signaling.
Dopamine, by activating dopamine D1-type receptors, and adenosine, by activating adenosine A(2A) receptors, stimulate phosphorylation of DARPP-32 (dopamine- and cAMP-regulated phosphoprotein of M(r) 32,000) at Thr-34. In this study, we investigated the effect of metabotropic glutamate (mGlu) receptors on DARPP-32 phosphorylation at Thr-34 in neostriatal slices. A broad-spectrum mGlu receptor ag...
متن کاملProtein kinase A directly phosphorylates metabotropic glutamate receptor 5 to modulate its function.
Metabotropic glutamate receptor 5 (mGluR5) regulates excitatory post-synaptic signaling in the central nervous system (CNS) and is implicated in various CNS disorders. Protein kinase A (PKA) signaling is known to play a critical role in neuropsychiatric disorders such as Parkinson's disease, schizophrenia, and addiction. Dopamine signaling is known to modulate the properties of mGluR5 in a cAMP...
متن کاملSynergistic interaction between adenosine A2A and glutamate mGlu5 receptors: implications for striatal neuronal function.
The physiological meaning of the coexpression of adenosine A2A receptors and group I metabotropic glutamate receptors in gamma- aminobutyric acid (GABA)ergic striatal neurons is intriguing. Here we provide in vitro and in vivo evidence for a synergism between adenosine and glutamate based on subtype 5 metabotropic glutamate (mGluR5) and adenosine A2A (A2AR) receptor/receptor interactions. Coloc...
متن کاملRegulation of Group I Metabotropic Glutamate Receptors by MAPK/ERK in Neurons.
Group I metabotropic glutamate receptors (mGluR1 and mGluR5 subtypes) are regulated by protein kinases. A recent focus is mitogen-activated protein kinases (MAPK). A prototypic subclass of MAPKs, extracellular signal-regulated kinases (ERK), is densely expressed in adult brain postmitotic neurons. This kinase resides in not only the cytoplasm around the nucleus, also the neuronal peripheral str...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 25 15 شماره
صفحات -
تاریخ انتشار 2005